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Abstract—The fluid flow and domain change caused by shrinkage are analyzed for the solidification of

alloys in a two-dimensional rectangular cavity with riser. The system of governing equations based on the

modified continuum model is solved by the SIMPLEC algorithm. and the change of domain is handled

by the front tracking method. The differences between the traditional study, i.e. without considering

shrinkage effect, and the present study are presented. It is found that the shrinkage-induced fluid flow and

domain change enhance convective heat transfer, and the global solidification time is smaller than that
predicted without the shrinkage effect.

INTRODUCTION

THE SOLID-LIQUID phase change (melting or solidifi-
cation) of multiconstituent systems is important in
many engineering applications, such as the making
of ice, the freezing of food, the solidification of cast-
ings and ingots, crystal growth, welding, energy stor-
age, etc. The solidification of alloys is characterized
by the existence of a two-phase or mushy zone that
separates the pure solid and liquid zones in the
domain. Convective flow within the mushy zone is
considered to be the most important and general cause
of casting defects (hot tear, porosity and macro-
segregation) [1-4]. Such fluid flow may be induced by
shrinkage or contraction as well as by thermal and/or
solutal buoyancy forces. The fluid flows driven by
thermal and solutal buoyancy forces during alloy sol-
idification have been widely investigated recently [S—
7). Literature on shrinkage-induced fluid flow during
alloy solidification, however, is somewhat lacking.
Flemings and Nereo [2] established a mathematical
model to study macrosegregation based on the
assumption that fluid flow was driven by thermal con-
traction only. In their model, temperature gradient
and freezing rate were presumed to be known, and no
attempt was made to solve the heat flow equations.
Furthermore, the liquid fraction was assumed to be
unaffected by the fluid flow, and the fluid flow velocity
was specified without consideration of hydro-
dynamics. In the study of porosity, Kubo and Pehike
[3], as weli as Minakawa and co-workers {4],
developed mathematical models based on the assump-
tion that the fluid flow was driven by shrinkage only.
However, the energy equation used in these models
was a heat conduction equation. In other words, the
energy equation was uncoupled from the momentum
equation, so that the advective heat flux was com-
pletely neglected.

The models proposed recently [5-7] to solve the

mass, momentum, and energy equations simul-
taneously in the phase change systems arc based on
the assumption that the density of the solid phase is
equal to that of the liquid phase. Hence, the fluid flow
induced by shrinkage cannot be predicted by these
models. Also, in these models the computational
domain was assumed constant. So far, to the best
knowledge of the authors, no mathematical model has
been developed to handle the shrinkage-induced fluid
flow and domain change during the solidification
process.

The objective of the present study is to develop a
mathematical model and analytical tool to simulate
shrinkage-induced fluid flow during alloy solidifica-
tion. The differences between the situations in which
the shrinkage-induced fluid flow is omitted and con-
sidered are also investigated.

ANALYSIS

Consider a rectangular cavity with a riser located
on the top filled with molten alloy, as illustrated in
Fig. 1. Solidification is induced by reducing the tem-
perature at the bottom wall to less than the solidus
temperature, whereas the other walls are considered
to be adiabatic.

The continuum equations developed by Bennon
and Incropera [5] have been modified by Chiang [8]}
to include the shrinkage-induced fluid flow. In the
derivation of the system of governing equations, the
following simplifying assumptions are made: (1) the
transport processes are laminar; (2) the properties
of the solid and hiquid phases are homogeneous and
isotropic; (3) the solid and liquid phases in the mushy
zone are in local thermal equilibrium; (4) the solid is
rigid and free of internal stress; (5) the viscosity and
density for each phase are constant, but can be differ-
ent for the liquid and solid phases: (6) no pore for-
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NOMENCLATURE

A length of casting, Fig. 1
B, C casting dimensions, Fig. |

¢ specific heat

C  coefficient, equation (18)

C, permeability coefficient, equation (17)
d  dendrite arm spacing

D height of casting, Fig. 1

E  original height of riser, Fig. 1
I mass fraction

g volume fraction

h  enthalpy

k thermal conductivity

K permeability

L latent heat

p pressure

q constant, equation (20)

t time

T  temperature

T, liquidus temperature

T.

5

u, v

solidus temperature

velocity components in the x and y
directions

V  velocity vector

x, ¥ Cartesian coordinates.

Greek symbols |
p  solidification contraction |
i dynamic viscosity
¢ density.

Subscripts
b condition at the bottom of the casting
initial condition
phase &
liquid phase
relative velocity between the solid and
liquid phases
s solid phase.

e e

mation is present ; (7) Newtonian phase behavior pre-
vails; and (8) isotropic permeability exists. For the
systems of interest, the conservation of equations for
mass, momentum and energy can be expressed as [8]

Continuity
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The continuum density, velocity, enthalpy. and
thermal conductivity are defined as

p=9gpstgn (5)
V= fV.+ 4V, (6)
h = f.h,+Hi (7
k=gk,+gk. ®)

The solid mass fraction and liquid mass fraction are
defined, respectively, as

fs =g~p~//p (9)
fi=a/p. (10)

The phase enthalpy is defined as

.
/1A.=J ¢, dT (1
0
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where ¢, represents an effective specific heat of phase
k. If the phase specific heats are further assumed con-
stant, phase enthalpies by equation (11) are express-
ible as

hy =c.T (12)

(13)

where L is the latent heat of the alloy. The continuum
conservation equations are further simplified by
assuming the solid phase to be stationary (V, = 0).
This implies that the moving and settling of solid
crystallite, termed the mass feeding [1], is neglected.

In general, the densities of the solid and liquid
phases are not the same ; therefore, some bulk motion
of liquid resulting from the density difference is
expected during solidification. Usually the density of
the solid phase p, is greater than the density of the
liquid phase p, (antimony, bismuth, and gallium are
some exceptions). Hence, in practical foundry oper-
ations, risers are used to feed the shrinkage, and,
thus, to reduce possible casting defects [1]. The riser
introduces a free surface between the liquid and gas
phases. The specification of boundary conditions at
the free surface is quite complex. A well-known
method used in the foundry to improve the efficiency
of risers is to insulate them [1]. Hence, an adiabatic
boundary condition at the free surface is assumed. As
the shrinkage-induced fluid flow velocity is small, the
free surface is considered to be flat. Hence, the effect of
surface tension can be neglected. Such an assumption
cannot be applied to the pure substance because of
different solidification mechanisms [1].

In summary, the boundary conditions for the
governing equations (1)—(4) can be written as

h=T+(c,—e)T+L

(Datx=0and0<y<D:u=0,v=0,0T/0x =0
(14a)

QDatx=Aand0<y<D:u=0,0=0,0T/0x=0
(14b)

(3atx=Band D <y < (D+E):
u=0,v=0,0T/dx=0 (l4c)

Watx=(A-C)and D <y < (D+E):
u=0,0=0,0T/0x=0 (14d)

(Baty=0and0<x<A:u=0,0=0,T=T,
(15a)

(6)aty=Dand0<x<B:u=0,0=0,0T/dy=0
(15b)

(Maty=Dand(A-C)<x<C:
u=0,v=0,0T/0y=0 (15¢)
(8aty=(D+E)andB< x < (A-C):
p=0,0u/0y =0,0T/oy =0 (15d)

where pressure p is the gage pressure.
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One should note that the last term on the right-
hand side of equation (2) is identical to zero when the
density difference between the solid and liquid phases
is not considered. The third and fourth terms on
the right-hand side of equation (2) are empirical
expressions to account for the first- and second-order
drag forces, respectively, between the liquid and solid
phases. The fifth term on the right-hand side of equa-
tion (2) is identically zero except within the mushy
region, in which £, and /| are not zero simultaneously.
The same argument can be applied to equation (3).

The assumption of permeability in the multiphase
region requires the consideration of growth mor-
phology specific to the system under consideration. In
analogy to flow in porous media, the permeability K
is calculated using the Carman—Kozeny equation [9]

3

g
fTaasar 1o

The value of C, depends on the morphology of the
porous media. In the present study C, is expressed as

(3]

180

C1=?

an
where d, the dendritic arm spacing, is assumed to be
a constant and is of the order of 10~2 cm. Similarly,
the inertial coefficient, C, can be calculated from [10]

(18)

In the pure solid phase (g, = 0) and pure liquid phase
(g, =1), equation (16) reduces to the appropriate
limits, namely K = 0 and K = oo, respectively.

Several relationships between the solid fraction g,
and the casting temperature T have been proposed in
the past [1]. The rate of latent heat release is closely
related to the alloy microstructure evolution during
solidification, and hence is alloy dependent. In the
present study, the latent heat of solidification is
assumed to be released linearly between the solidus
and the liquidus temperatures, and one has

C = 0.13g 2.

_h-T 19
gs= Tl _ Ts ( )
where T, and 7, are the solidus and liquidus tem-
peratures of the casting, respectively.

NUMERICAL METHOD

The governing equations are in the general format
suggested by Patankar [11] for the numerical solution
of heat transfer and fluid flow problems; i.e. they
contain a transient term, a diffusive term, a convective
term, and source terms. Hence, any established
numerical procedure for solving coupled elliptic par-
tial differential equations can be used, with slight
modifications for the source terms. In the present
study, the equations were solved iteratively at each
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time step using the control-volume-based finite
difference procedure described by Patankar [11]. A
fully implicit formulation was used for the time-
dependent terms and the combined convection;
diffusion coefficients were cvaluated using an upwind
scheme. The SIMPLEC algorithm [12] was applied
to solve the momentum and continuity equations to
obtain the velocity field. At cach time-step, the
momentum equation was used first in the itcration
process, using the estimated volume fractions of solid
and liquid for the mixture density, the permeability,
and the mass fractions of solid and liquid. Then the
cnergy equation was used to obtain the enthalpy, with
which the temperature can be calculated. Next, the
volume fractions of solid and liquid, the permeability.
and the mass fractions of solid and liquid can be
updated, and this process was repeated for each iter-
ation step. For each time-step. iterations were ter-
minated when the maximurn residual source of mass,
momentum and cnergy was less than Ix10 % A
line-by-line solver based on the tridiagonal matrix
algorithm {TDMA ) was used to iteratively solve the
algebraic discretization equations. The last five terms
on the right-hand side of equations (2) and (3), as well
as the last two terms on the right-hand side of equation
(4), represent the source terms, and are treated accord-
ing to the procedure outlined in ref. [11]. The fourth
and fifth terms on the right-hand side of equations (2)
and (3) as well as the last term on the right-hand side
of equation (4) were calculated via the upwind scheme.
One should note that in order to avoid the singularity
in equation (2) when g, = 0, equation (16) for the
permeability K has been modified to

3
K= ‘(.(A +4q) . (20)

Ci(1—g)°
where ¢ is a small number, say 1 x 107 ** to suppress
the fluid velocities in the solid phase.

The governing equations (1)-(4) are valid in the
pure liquid and solid regions as well as in the mushy
zone. Consequently, there is no need to track explicitly
the geometrical shape and the extent of each region.
Hence, a fixed and regular grid system can be utilized
in the numerical scheme and one sct of cquations is
solved throughout the physical domain. Special atten-
tion should be drawn to the moving boundary on the
free surface at the top of the riser. As the present
problem involves a distinct frec surface at the top of
the riser. the front tracking method [13] was employed
to obtain the solutions. Moving nodes are placed at
the frec surface to track the physical domain of the
riser. As the free surface is assumed to be flat, the
movement is one-dimensional, but the momentum
calculation is two-dimensional. The movement of the
free surface in the riser is handled by taking the aver-
aged velocity of the moving nodes times the time-step
size.

In the calculations reporied here. a grid of 31 x 6l
points was utilized in the casting and a grid of 12 x 61
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points was utilized in the riser. The grid was slightly
skewed in the x and y directions to provide a higher
concentration of nodal points near the walls of the
casting and the riser, where larger velocity and thermal
gradients exist. Of course, a finer grid system can
provide better resolution in the numerical calculation.
However, the selected mesh size here should only be
viewed as a compromise between the accuracy and
the computational cost. To test the accuracy of the
numerical algorithm developed in this study, cal-
culations were performed for the limiting case of
cavity flow problems without phase change [8]. A
good agreement was found between the predictions
and the results reported in the literature.

From numerical experimentations, it was found
that a larger time-step size decreased the convergence
rate at the beginning of the computation. This is under-
standable, as the heat flux at the bottom wall is very
large at the beginning of the solidification. In order
to obtain optimum solution accuracy and to maintain
numerical stability, a variable time-step size is adopted
in the numerical calculation. The initial time-step size
was 0.01 s and the maximum time-step size was 0.5 s.
All the calculations were executed on Apollo 10000
workstations.

RESULTS AND DISCUSSION

Numerical calculations were performed with typical
material properties for the 1% Cr-steel, from ref. [14].
These properties, casting conditions, and geometric
data are summarized in Table 1. The solidification
contraction, ff, in Table 1 is defined as [{]

:(?s' -
o

p= (21)

The value of B for most alloys is between 2 and 8%.

Table 1. Thermophysical properties for 1% Cr
steel, casting conditions and geometric data

Symbol (units) Value
k (calem™'s 'K ) 0.07852
ki(calem s 'K N 0.06861
¢ (calg "Kh 0.15560
afealg 'K D 0.15550
pAgem 7.36260
m{gem ) 5.89008%
m=p (gem %) 6.62634%
Lcalg ™" 65.9033
7. (K) 1744 .4
T, (K) 177717
T, (K) 1950.0
7, (K) 1200.0
sufgem s Y 44122%10
[ 2%+
A (cm) 7.8
B and C (¢m) 2.5

D and E (cm) 15.0

+ Assumed.
¥ Density for the case without convection
effect and domain change.
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For the other phase change material used in the energy
storage system, the value of B can be much higher. In
order to see the effects of shrinkage and domain
change, § is assumed to be 20%.

The positions and shapes of the mushy region and
related flow field at the selected grid points are shown
in Figs. 2-4 at times t = 75.7, 375.7 and 1575.7 s,
respectively. For clarity, the solidus and liquidus con-
tours are also shown on the velocity plots, which
represent the boundaries of the solid region, mushy
region, and liquid region. From these figures, one can
see that the velocity magnitude due to shrinkage is
relatively small compared with that found in a typical
case of forced or natural convection. The velocities
are zero at the solid phase, and thereafter increase
approximately with increasing y value. The maximum
velocity is always at the top of the riser. The mag-
nitude of the velocity of shrinkage-induced fluid flow
is determined by the solidification rate. From Fig.
2, solidification is initially characterized by a rapid
propagation of solidus and liquidus fronts, which
remain nearly planar and free of irregularity. It also
indicates that the solidification rate is very large at
this moment. Hence, the maximum shrinkage-induced
velocity in Fig. 2 is larger than that of Figs. 3 and 4.
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== = = conduction only
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FiG. 5. The change of domain as a function of time.

There are two small vortices near the intersection of
the riser and the casting in Fig. 2 because of a sudden
change in area. These two vortices increase in size, as
shown in Fig. 3, but their strength is decreased with
increasing time, due to the decrease of solidification
rate. The vortices disappear gradually near the end of
the solidification, as shown in Fig. 4, due to the small
shrinkage-induced fluid flow and the closer proximity
of the solid front to the riser, which suppresses the
vortices. Due to a fine permeable matrix (dendrites)
within the mushy zone, the velocities in this region are
relatively smaller than those in the liquid region. Even
though the velocity is small within the mushy region.
such a fluid flow could be significant in determining
the casting defects [1-4], especially for the case under
study in which the flow is induced solely by the
shrinkage.

The domain change as a function of time during
solidification can be seen in Fig. 5. The horizontal
dashed line in this figure represents the height of the
riser, which is a constant because there is no density
difference between the solid and liquid phases for the
traditional study. The slope of the solid line, which
denotes the result from the present study, is large at
the beginning due to the large initial heat flux. The
slope is decreased gradually because the solidified
alloy increases the heat resistance and decreases the
heat flux, which reduces the solidification rate. If the
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1600 present study

— — — conduction only
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1300

TEMPERATURE (C)
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1100 +
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1200 2100

TIME ({SECOND}
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F16. 6. A comparison of temperature history between the
case of conduction only and the present study at x = 3.75cm
and y = 2.17 cm.
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FiG. 7. A comparison of temperature history between the
case of conduction only and the present study at x = 3.75cm
and y = 7.50 em.

heat extraction rate is large, the shrinkage effect
should be more significant. The amount of domain
change is proportional to the solidification contrac-
tion, . When the solidification contraction is large,
as i the present case, the assumption of constant
domain can lead to an unrealistic solution.
Comparisons of temperature history at several
locations between the case without shrinkage and the
present study are shown in Figs. 6-8. For the grid
point near the bottom wall, the temperature histories
of both cases are almost coincident, as shown in Fig.
6. The temperature for the case with shrinkage is
always higher than that of the case without shrinkage
(i.e. conduction only), as shown in Figs. 6 and 7. The
reason for such a phenomenon is that the riser feeds
hot fluid to the casting in the shrinkage-induced fluid
flow case. That means the shrinkage-induced fluid
flow enhances convective heat transfer. From Fig. 8,
one can see that when the time is greater than about
1050 s, the temperature near the bottom of the riser
for the case with shrinkage is lower than that of the
case with conduction only. This phenomenon can be
cxplained by the fact that less sensible heat is available
to sustain the temperature, owing to the decrease of
the height of the riser, when the shrinkage effect 1s
taken into consideration. Therefore, the global sol-
idification time for the casting, considering the shrink-

1700
present study
1660
- = =~ conduction only

a
g 1620
4
% 1980
=4

1540 ¢

1500 l

Q 300 600 200 1200 1500 1800 2400
TIME (SECOND)

Fig. 8. A comparison of temperature history between the
case of conduction only and the present study at x = 3.75em
and y = 17.62 cm.
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age effect, is less than that of the case with conduction
only.
CONCLUSIONS

A mathematical model for studying the shrinkage
effect during alloy solidification has been presented in
this paper. The fluid flow and domain change caused
solely by shrinkage were calculated for a typical alloy
of 1% Cr-steel to demonstrate the significance of
the shrinkage effect. From the present study, several
conclusions can be summarized as follows.

(1) The shrinkage-induced fluid flow during sol-
idification is strongly dependent on cooling conditions
and solidification contraction, and its influence on the
casting cooling curve could be significant.

(2) The global solidification time, which is the pri-
mary factor with which to determine the shake-out
time of the casting, can be reduced by considering the
shrinkage-induced fluid flow.

(3) Consideration of shrinkage-induced fluid flow
could be important if one is interested in studying the
flow-related casting defects, especially in the case of
large density difference between the solid and liquid
phases, large heat extracting rates, and weak natural
convection.
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ECOULEMENT DE FLUIDE INDUIT PAR LE RETRAIT ET CHANGEMENT DU
DOMAINE DANS UNE SOLIDIFICATION BIDIMENSIONNELLE D'UN ALLIAGE

Résomé-—L écoulement du fluide et le changement de domaine causé par le retrait sont analysés pour la

solidification d’alliages dans une cavité bidimensionnelle rectangulaire. Le systéme d’équations basées sur

le modeéle modifié des milieux continus est résolu par I'algorithme SIMPLEC et le changement de domaine

est traité par la méthode du déplacement de front. Les différences entre I'étude traditionnelle sans considérer

Ieffet du retrait, et la présente étude sont présentées. On trouve que 'écoulement du fluide induit par le

retrait et le changement de domaine accroissent le transfert thermique convectif, et le temps global de
solidification est plus petit que ce qui est prédit sans Peffet du retrait.

FLUSSIGKEITSBEV_M"EGUNG UND RAUMLICHE VERANDERUNG DURCH
SCHRUMPFUNGSVORGANGE BEI DER ZWEIDIMENSIONALEN ERSTARRUNG VON
LEGIERUNGEN

Zysammenfassung—Die Fliissigkeitsbewegung und die rdumliche Verdnderung beim Schrumpfen, verur-
sacht durch Erstarrung einer Legierung, wird in einem zweidimensionalen rechteckigen Hohlraum mit
Steiger untersucht. Das System der bestimmenden Gleichungen basiert auf einem modifizierten Kon-
tinuumsmodell und wird mittels SIMPLEC-Algorithmus gelost, die rdumliche Verdnderung mittels einer
Frontfortschreitungsmethode berechnet. Die Unterschiede zu herkémmlichen Untersuchungen ohne
Schrumpfung werden dargestellt. Es kann gezeigt werden, daB die Schrumpfungsvorgiinge den konvek-
tiven Wirmetransport verbessern und damit die gesamte Erstarrungszeit kleiner wird als sie ohne
Schrumpfungseffekt vorhergesagt wird.
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TEYEHUE XHUAKOCTH ¥ N3MEHEHME 3AHSITON EIO OBJIACTHU 3A CUET YCAIKHU
B IMPOLIECCE JBYMEPHOTO 3ATBEPAEBAHUA CIINTIABA

ABHOTRUMS—AHATH3APYIOTCH TEYCHHE XHAKOCTH M H3MeHeHue o0lacTH, 3aHATOH €10, NIPU YCAOKe B
npouecce 33TBEpICBAHHS CIUIABOB B ABYMEDHOH NOJOCTH NPAMOYTOJIbHOIO ceyens. C UCTIONL30BAHUEM
anropurMa SIMPLEC pemnaercs cHCTeMa ONPE/EISIOWAX ypaBHeHHH, OCHOBaHHAas HA MOZuHIHUpO-
BAaHHOH MOJE/HM CIUIOIIROA Cpeabl, H MCTOONCM C/ACKCHHMS 3a TNepeMeuicHHeM ¢poHTa OnpeaeseTcs
n3meHenne obnactu. [IpuBeneHs pa3snMuHs MeXAY TPaIHUMOHHBIM MCCJIEAOBAHHEM, HE YUHTHIBAIOILMM
apdexT ycajkn, H NPEACTABICHHBIM B JaHHOH cTaThe. HaiineHo, 410 00yc/IOBIIeHHbIE YCANKOH TeYeHHE
KHAKOCTH ¥ H3MeHeHHe 007acTH MHTCHCHOHUMPYIOT KOHBEKTHBHBIA TEIUIOREPEHOC H BPEMs TIOJHOTO
3aTBEP/IeBAHNA MEHBLIE paccyuTanHoro 6e3 yuera addexra yoaaxu.



