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Abstract-The fluid flow and domain change caused by shrinkage are analyzed for the solidification of 
alloys in a two-dimensional rectangular cavity with riser. The system of governing equations based on the 
modified continuum model is solved by the S!MPLEC algorithm, and the change of domain is handled 
by the front tracking ntethod. The differences between the traditiona study, i.e. without considering 
shrinkage effect, and the present study are presented. It is found that the shrinkage-induced fluid flow and 
domain change enhance convective heat transfer, and the global solidification time is smaller than that 

predicted without the shrinkage effect. 

INTRODUCTION 

THE SOLIWLIQUID phase change (melting or solidifi- 
cation) of multiconstituent systems is important in 
many engineering applications, such as the making 
of ice, the freezing of food, the solidification of cast- 
ings and ingots, crystal growth, welding, energy stor- 
age, etc. The solidification of alloys is characterized 
by the existence of a two-phase or mushy zone that 
separates the pure solid and liquid zones in the 
domain. Convective flow within the mushy zone is 
considered to be the most important and general cause 
of casting defects (hot tear, porosity and macro- 
segregation) [l-4]. Such fluid flow may be induced by 
shrinkage or contraction as well as by thermal and/or 
solutal buoyancy forces. The fluid flows driven by 
thermal and solutal buoyancy forces during alloy sol- 
idification have been widely investigated recently [.5- 
7]. Literature on shrinkage-induced fluid flow during 
alloy solidification, however, is somewhat lacking. 
Flemings and Nereo [2] established a mathematicai 
model to study macrosegregation based on the 
assumption that fluid flow was driven by thermal con- 
traction only. In their model, temperature gradient 
and freezing rate were presumed to be known, and no 
attempt was made to solve the heat flow equations. 
Furthe~ore, the liquid fraction was assumed to be 
unaffected by the fluid flow, and the fluid how velocity 
was specified without consideration of hydro- 
dynamics. In the study of porosity, Kubo and Pehlke 
[3], as well as Minakawa and co-workers 141, 
developed mathematical models based on the assump- 
tion that the Ruid flow was driven by shrinkage only. 
However, the energy equation used in these models 
was a heat conduction equation. In other words, the 
energy equation was uncoupled from the momentum 
equation, so that the advective heat flux was com- 
pletely neglected. 

The models proposed recently f5-71 to solve the 

mass, momentum, and energy equations simul- 
taneously in the phase change systems are based on 
the assumption that the density of the solid phase is 
equal to that of the liquid phase. Hence, the fluid flow 
induced by shrinkage cannot be predicted by these 
models. Also, in these models the computational 
domain was assumed constant. So far, to the best 
knowledge of the authors, no mathematical model has 
been developed to handle the shrinkage-induced fluid 
flow and domain change during the solidification 
process. 

The objective of the present study is to develop a 
mathematical model and analytical tool to simulate 
shrinkage-indu~d fluid flow during alloy solidifica- 
tion. The differences between the situations in which 
the shrinkage-induced fluid flow is omitted and con- 
sidered are also investigated. 

ANALYSIS 

Consider a rectangular cavity with a riser located 
on the top filled with molten alloy, as illustrated in 
Fig. 1. Solidification is induced by reducing the tem- 
perature at the bottom wall to less than the solidus 
temperature, whereas the other walls are considered 
to be adiabatic. 

The continuum equations developed by Bennon 
and Incropera [S] have been modified by Chiang [S] 
to include the shrinkage-induced fluid flow. In the 
derivation of the system of governing equations, the 
following simplifying assumptions are made : (1) the 
transport processes are laminar; (2) the properties 
of the solid and liquid phases are homogeneous and 
isotropic ; (3) the solid and liquid phases in the mushy 
zone are in local thermal equilibrium ; (4) the solid is 
rigid and free of internal stress; (5) the viscosity and 
density for each phase are constant, but can be differ- 
ent for the liquid and solid phases; (6) no pore for- 
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NOMENCLATURE 

A length of casting, Fig. 1 
B, C casting dimensions, Fig. 1 
( specific heat 
C coefficient, equation (I 8) 
C, permeability coefficient, equation (17) 
rl dendrite arm spacing 
D height of casting, Fig. 1 
E original height of riser, Fig. I 

.f’ mass fraction 

.Gl volume fraction 
I1 enthalpy 
k thermal conductivity 
K permeability 
L latent heat 

P pressure 

(1 constant, equation (20) 
t time 
T temperature 

r, liquidus temperature 

T, sohdus temperature 
U. 11 velocity components in the .Y and J 

directions 
v velocity vector 
.Y, y Cartesian coordinates. 

Greek symbols 

P solidification contraction 

P dynamic viscosity 

0 density. 

Subscripts 
b condition at the bottom of the casting 
i initial condition 
k phase h- 
I liquid phase 
r relative velocity between the solid and 

liquid phases 
s solid phase. 

mation is present; (7) Newtonian phase behavior pre- 
vails ; and (8) isotropic permeability exists. For the 
systems of interest, the conservation of equations for 

mass, momentum and energy can be expressed as [8] 

Continuity 

;p)+v*(Pv) = 0 

Momentum 

(1) _ 

Energy 

-v~lilf;.f;v,u,~+v~(lr,uv(~,)) (2) 
-V*(p(V-V,)(h,-h)). (4) 

The continuum density, velocity, enthalpy. and 
thermal conductivity are defined as 

RISER 
7 L 7 E 

t--R “-I 
s+L 

=+ S 
D 

I; x CAST1NG 1 1 
FIG I. Schematic of the physical domain and the coordinate 

system. 

P =%P\+glPI 

v = .fiV, +j;v, 
I2 = fill, +,fqz, 

k = ,g,k, +g, /i, 

The solid mass fraction and liquid 
defined, respectively, as 

.fl = g,P,iP 

.f; = .9, PI/P. 

The phase enthalpy is defined as 

(5) 

(6) 

(7) 

(8) 

mass fraction are 

(9) 

(IO) 

(II) 
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where c, represents an effective specific heat of phase 
k. If the phase specific heats are further assumed con- 
stant, phase enthalpies by equation (11) are express- 
ible as 

h, = c,T (12) 

h, = c,T+(c,-c,)Tr+L (13) 

where L is the latent heat of the alloy. The continuum 
conservation equations are further simplified by 
assuming the solid phase to be stationary (V, = 0). 
This implies that the moving and settling of solid 
crystallite, termed the mass feeding [l], is neglected. 

In general, the densities of the solid and liquid 
phases are not the same ; therefore, some bulk motion 
of liquid resulting from the density difference is 
expected during solidification. Usually the density of 
the solid phase ps is greater than the density of the 
liquid phase p, (antimony, bismuth, and gallium are 
some exceptions). Hence, in practical foundry oper- 
ations, risers are used to feed the shrinkage, and, 
thus, to reduce possible casting defects [l]. The riser 
introduces a free surface between the liquid and gas 
phases. The specification of boundary conditions at 
the free surface is quite complex. A well-known 
method used in the foundry to improve the efficiency 
of risers is to insulate them [l]. Hence, an adiabatic 
boundary condition at the free surface is assumed. As 
the shrinkage-induced fluid flow velocity is small, the 
free surface is considered to be flat. Hence, the effect of 
surface tension can be neglected. Such an assumption 
cannot be applied to the pure substance because of 
different solidification mechanisms [l]. 

In summary, the boundary conditions for the 
governing equations (l)-(4) can be written as 

(I)atx=OandO~y~D:u=O,u=O,~T/~,x=O 

(14a) 

(2)atx=AandO<y<D:u=O,v=O,aT/ax=O 

(14b) 

(3)atx=BandDGyG(D+E): 

u = 0, v = 0, aT/ax = 0 (14c) 

(4)atx=(A_C)andD<y<(D+E): 

u = 0, V = o, is-/ax = 0 (14d) 

(5)aty=OandO~x~A:u=O,u=O,T= Tb 

(W 

(6) at y = D and 0 < x G B : u = 0, v = 0, aTjay = 0 

(15b) 

(7)aty=Dand(A_C)<x<C: 

u = 0,~ = 0, aTjay = 0 (15~) 

(8)aty=(D+E)andB<x<(A-C): 

P = 0, at& = 0, aTjay = 0 (15d) 

where pressure p is the gage pressure. 

One should note that the last term on the right- 
hand side of equation (2) is identical to zero when the 
density difference between the solid and liquid phases 
is not considered. The third and fourth terms on 
the right-hand side of equation (2) are empirical 
expressions to account for the first- and second-order 
drag forces, respectively, between the liquid and solid 
phases. The fifth term on the right-hand side of equa- 
tion (2) is identically zero except within the mushy 
region, in which f, and X are not zero simultaneously. 
The same argument can be applied to equation (3). 

The assumption of permeability in the multiphase 
region requires the consideration of growth mor- 
phology specific to the system under consideration. In 
analogy to flow in porous media, the permeability K 
is calculated using the Carman-Kozeny equation [9] 

3 

K= ” 
C,(l-gd2 (16) 

The value of C, depends on the morphology of the 
porous media. In the present study C, is expressed as 

[31 

c, =$ (17) 

where d, the dendritic arm spacing, is assumed to be 
a constant and is of the order of lo-* cm. Similarly, 
the inertial coefficient, C, can be calculated from [IO] 

c = O.l3g,3’2. (18) 

In the pure solid phase (g, = 0) and pure liquid phase 
(g, = l), equation (16) reduces to the appropriate 
limits, namely K = 0 and K = co, respectively. 

Several relationships between the solid fraction gs 
and the casting temperature T have been proposed in 
the past [l]. The rate of latent heat release is closely 
related to the alloy microstructure evolution during 
solidification, and hence is alloy dependent. In the 
present study, the latent heat of solidification is 
assumed to be released linearly between the solidus 
and the liquidus temperatures, and one has 

T, - T 

” = T, - T, (19) 

where T, and T, are the solidus and liquidus tem- 
peratures of the casting, respectively. 

NUMERICAL METHOD 

The governing equations are in the general format 
suggested by Patankar [ 1 l] for the numerical solution 
of heat transfer and fluid flow problems; i.e. they 
contain a transient term, a diffusive term, a convective 
term, and source terms. Hence, any established 
numerical procedure for solving coupled elliptic par- 
tial differential equations can be used, with slight 
modifications for the source terms. In the present 
study, the equations were solved iteratively at each 
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time step using the control-volume-based finite 
difference procedure described by Patankar [l I]. A 
fully implicit formlllation was used for the time- 
dependent terms and the combined convection, 
difrusion coefficients were evaluated using an upwind 
scheme. The SIMPLEC algorithm [II] was applied 
to solve the momentum and continuity equations to 

obtain the velocity field. At each time-step, the 
Illomenturn equation was used first in the iteration 
process, using the estimated volume fractions of solid 
and liquid for the mixture density, the permeability, 
and the mass fractions of solid and liquid. Then the 
energy equation was used to obtain the enthaipy. with 
which the temperature can be calculated. Nest, the 
volume fractions of solid and liquid, the permeability. 
and the mass fractions of solid and liquid can be 
updated, and this process was repeated for each itcr- 

ation step. For each time-step. iterations wcrc tcr- 
minated when the maximum residual source oI‘mass. 

momentum and energy was less than 1 x IO I. A 
line-by-line sotver based on the tri~iiagonal matrix 
atgorithm (TDMA) was used to iteratively solve the 
algebraic discrctization equations:Thc last tivc terms 
on the right-hand side of equations (3) and (3). as well 

as the last two terms on the right-hand side ofequation 
(4). represent the source terms, and are treated accord- 
ing to the procedure outlined in rcl: [l I]. The fourth 
and fifth terms on the right-hand side ofequations (2) 
and (3) as well as the last term on the right-hand side 
ofeyuation (4) wcrccaiculated via the upwind scheme. 

One should note that in order to avoid the singularity 
in equation (7) when y, = 0. equation (16) for the 
perm~dbility f( has been modified to 

K= i.r/,?+4 
c‘, (1 -,q,)’ 

where Q is a small number. say 1 x IO “. to suppress 
the Ruid velocities in the solid phase. 

The governing equations (i)~~f4) are valid in the 
pure liquid and solid regions as well as in the mushy 
zone. Consequently, there is no need to track explicitly 
the geometrical shape and the extent of each region. 
Hence, a fixed and regular grid system can be utilized 
in the nutnerical scheme and one set of equations is 
solved throughout the physical domain. Special atten- 
tion should be drawn to the moving boundary on the 
free surface at the top of the riser. As the present 
probicm involves a distinct free surface at the top ol 
the riser, the front tracking method [ 131 was empioycd 
to obtain the solutions. Moving nodes arc placed at 
the fret surface to track the physical domain of the 
riser. As the free surface is assumed to be flat, the 
movement is one-dimensional. but the momentum 
calculation is two-dimensional. The movement of the 
free surface in the riser is handled by taking the avcr- 
aged vciocity of the moving nodes times the time-step 
size. 

In the calculations reported here. a grid of 31 x 61 
points was utilized in the casting and a grid of 12 x 61 

points was utilized in the riser. The grid was slighriy 
skewed in the x and JJ directions to provide a higher 
concentration of nodal points near the walls of the 
casting and the riser. where larger velocity and thermal 

gradients exist. Of course, a finer grid system can 
provide better resolution in the numerical calculation. 

However. the selected mesh size her-c should only be 
vicwcd as a compromise bctwczn the accuracy ;krtd 
the compu~tiona~ cost. To test the accuracy of the 
numerical algorithm developed in this study, cal- 
culations were performed for the limiting case 01’ 
cavity flow problems without phase change [Xl. A 

good agreement was found between the predictions 
and the results reported in the iitmtture. 

From Ilurncr~~di experiinentati~~ns, it was found 
that a larger time-step size decrcascd the convergence 

rate at the beginning of the computation. This is under- 
standable. as the heat flux at the bottom wall i< ver\ 
targc at the beginning of the solidification. In order 
to obtain optimum solution accuracy and to maintain 
numerical stability, a variable time-step size is adopted 
in the numerical calculation. The initial time-step size 
was 0.01 s and the maximum time-step size was 0.5 s. 
Ail the calculations were executed on Apollo 10000 

workstations. 

RESULTS ARlD DISCUSSION 

Numerical calculations were performed with typical 
material properties for the I o/;, Cr--steel, from ref. 1141. 

These properties, casting conditions, and geometric 
data are summarized in Tabic I. The solidification 

contraction, [j, in Table 1 is defined as [I ] 

The value of [j for most alloys is between 2 and X’!/o. 

Table I T~erm~p~ysi~aI properties for 1% Cr 
steel. casting conditions and geometric data 

Symbol (units) Valllc 

X, (cal cm ’ s ’ I( ‘) 0.07852 
/i, (cdlcm- ’ s ’ K ‘1 0.06861 
c.(calg ‘K ‘) 0. I5560 
Q (cal g ’ K ‘I ti. i 55SO 
it (g cm ‘1 7.36260 
,I, (g cm ‘) 5.x9oos~ 
/), = J’% (g cm ‘) h.62634: 
L.(calg ‘) 65.9033 
7; W) 1744.4 
7; (K) 1177.7 
T, (K) 1950.0 
f-t, W) I200.0 
p (g cm I 5 ‘) 4.4122X IO i 

0 X46P 
A (cmj 7.5 
B and c‘ (cm) 2.5 
D and E (cm) I5.0 

._ ..I .._._._ .__ .- - ---~ 
P Assumed. 
$ Density for the case without convection 

effect and domain change. 
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For the other phase change material used in the energy 

storage system, the value of/l can be much higher. In 
order to see the effects of shrinkage and domain 

change, b is assumed to be 20%. 
The positions and shapes of the mushy region and 

related flow field at the selected grid points are shown 
in Figs. 24 at times t = 75.7, 375.7 and 1575.7 s, 
respectively. For clarity, the solidus and liquidus con- 
tours are also shown on the velocity plots, which 
represent the boundaries of the solid region, mushy 
region, and liquid region. From these figures, one can 
see that the velocity magnitude due to shrinkage is 
relatively small compared with that found in a typical 
case of forced or natural convection. The velocities 
are zero at the solid phase, and thereafter increase 
approximately with increasing y value. The maximum 
velocity is always at the top of the riser. The mag- 
nitude of the velocity of shrinkage-induced fluid flow 
is determined by the solidification rate. From Fig. 
2, solidification is initially characterized by a rapid 
propagation of solidus and liquidus fronts, which 
remain nearly planar and free of irregularity. It also 
indicates that the solidification rate is very large at 
this moment. Hence, the maximum shrinkage-induced 
velocity in Fig. 2 is larger than that of Figs. 3 and 4. 
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d 0.3OE-01 cm/Xc 

FIG. 3. The predicted flow patterns and mushy zone at time 
t = 375.7 s. 

___e 0.6OE-01 Cm/SC - O.l6E-01 cm&c 

FIG. 2. The predicted flow patterns and mushy zone at time FIG. 4. The predicted flow patterns and mushy zone at time 
t = 75.1 s. t = 1575.7 s. 
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I 
0 300 600 900 1200 1500 1900 2100 

TIME WXNDI 

FIG. 5. The change of domain as a function of time. 

There are two small vortices near the intersection of 

the riser and the casting in Fig. 2 because of a sudden 
change in area. These two vortices increase in size, as 

shown in Fig. 3, but their strength is decreased with 
increasing time, due to the decrease of solidification 
rate. The vortices disappear gradually near the end of 
the solidification, as shown in Fig. 4, due to the small 
shrinkage-induced fluid flow and the closer proximity 

of the solid front to the riser, which suppresses the 
vortices. Due to a fine permeable matrix (dendrites) 
within the mushy zone, the velocities in this region are 
retatively smaller than those in the liquid region. Even 

though the velocity is small within the mushy region. 
such a fluid flow could be significant in determining 
the casting defects [l--4], especially for the case under 
study in which the fiow is induced solely by the 

shrinkage. 
The domain change as a function of time during 

solidification can be seen in Fig. 5. The horizontal 
dashed line in this figure represents the height of the 
riser, which is a constant because there is no density 

difference between the solid and liquid phases for the 
traditional study. The slope of the solid line, which 
denotes the result from the present study, is large at 
the beginning due to the large initial heat flux. The 
slope is decreased gradually because the solidified 
alloy increases the heat resistance and decreases the 
heat flux, which reduces the solidification rate. If the 

1700 1 1 

_-- Fmdacrbn only 
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3 Ii 1400 

b 1300 
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1000 
0 300 600 900 1200 1500 1600 2100 

TIUE ISECOND) 

FIG. 6. A comparison of temperature history between the 
case of conduction only and the present study at x = 3.75 cm 

andy = 2.17cm. 

0 300 600 SO0 1200 1500 moo 2ioo 

TIK ISECONO) 

FIG. 7. .A comparison of temperature history between the 
case ofcondu~tion only and the present study at .t~ = 3.75 cm 

and J. = 7.50 cm. 

heat extraction rate is large, the shrinkage effect 
should be more significant. The amount of domain 
change is proportional to the solidification contrac- 
tion, 0. When the solidi~cat~on contraction is large, 
as in the present case, the assumption of constant 
domain can lead to an unrealistic solution. 

Comparisons of temperature history at several 
locations between the case without shrinkage and the 
present study are shown in Figs. 6--X. For the grid 
point near the bottom wall, the temperature histories 
of both cases are almost coincident, as shown in Fig. 
6. The temperature for the case with shrinkage is 
always higher than that of the case without shrinkage 
(i.e. conduction only), as shown in Figs. 6 and 7. The 
reason for such a phenomenon is that the riser feeds 
hot fluid to the casting in the shrinkage-induced fluid 
Row case. That means the shrinkage-induced fluid 
flow enhances convective heat transfer. From Fig. 8, 
one can see that when the time is greater than about 
IO50 s, the temperature near the bottom of the riser 
for the case with shrinkage is lower than that of the 

case with conduction only. This phenomenon can be 
explained by the fact that Less sensible heat is available 
to sustain the temperature, owing to the decrease of 

the height of the riser, when the shrinkage effect is 
taken into consideration. Therefore, the global sol- 
idification time for the casting. considering the shrink- 

1700 1 “1 

1500 
0 MO 600 900 mw BOO lSO0 2100 

TIKE CiECwO) 

FIG. 8. A comparison of tem~rature history between the 
case of conduction only and the present study at x = 3.75 cm 

and JJ = 17.62 cm. 
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age effect, is less than that of the case with conduction 
only. 

CONCLUSIONS 

A mathematical model for studying the shrinkage 
effect during alloy solidification has been presented in 
this paper. The fluid flow and domain change caused 
solely by shrinkage were calculated for a typical alloy 
of 1% Cr-steel to demonstrate the significance of 
the shrinkage effect. From the present study, several 
conclusions can be summarized as follows. 

(1) The shrinkage-induced fiuid flow during sol- 
idi~cation is strongly dependent on cooling conditions 
and solidification contraction, and its influence on the 
casting cooling curve could be significant. 

(2) The global solidification time, which is the pri- 
mary factor with which to determine the shake-out 
time of the casting, can be reduced by considering the 
sh~nkage-induced fluid flow. 

(3) Consideration of shrinkage-induced fluid flow 
could be important if one is interested in studying the 
flow-related casting defects, especially in the case of 
large density difference between the solid and liquid 
phases, large heat extracting rates, and weak natural 
convection. 
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~COULEME~ DE FLUIDE INDUIT PAR LE RETRAIT ET CHAN~~M~NT DU 
DOMAINE DANS UNE SOLIDIFICATION BIDIMENSIONNELLE D’UN ALLIAGE 

R&mmkL’Ccoulement du fluide et le changement de domaine causC par le retrait sont analysks pour la 
solidifi~tion d’alliages dans une cavit& b~dimensionnelle r~tangul~~. Le syst&ne d’kquations ba&es sur 
le modPie modi% des milieux continus est rbolu par l’algorithme SIMPLEC et le changement de domaine 
est traiti par la mkthode du d&placement de front. Les diff&ences entre l’btude traditionnelle sans considerer 
I’effet du retrait, et la prksente Etude sont p&sent&es. On trouve que i’&coulement du fluide induit par le 
retrait et le changement de domaine accroissent le transfert thermique convectif, et le temps global de 

solidification est plus petit que ce qui est pridit sans I’effet du retrait. 

FLifSSIGKEfTSBEWEGUNG UND R&JMLICHE VERANDERUNG DURCH 
SCHRUMPFUNGSVORG~NGE BEI DER ZWEIDIMENSIONA~EN ERSTARRUNG VON 

LEGIERUNGEN 

Zusummenfassung-Die Fliissigkeitsbewegung und die r&unliche Vergnderung beim Schrumpfen. verur- 
sacht durch Erstarrung einer Legierung, wird in einem zweidimensionalen rechteckigen Hohlraum mit 
Steiger untersucht. Das System der ~stjmmenden Gleichungen basiert auf einem modifizierten Kon- 
tinuumsmodell und wird mittels SIMPLEC-Al~o~thmus gel&t, die rsumliche Veranderung mittels einer 
Frontfortschreitungsmethode berechnet. Die Unterschiede zu herkcmmlichen Untersuchungen ohne 
Schrumpfung werden dargesteilt. Es kann gezeigt werden, daR die Schrumpfungsvorg~nge den konvek- 
tiven WIrmetransport verbessern und damit die gesamte Erstarrungszeit kfeiner wird als sie ohne 

Schrumpfungseffekt vorhergesagt wird. 
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TEqEHME ~~~K~T~ M ~3MEHEH~E 3AHIfT08 EIO OIZIACTM 3A C9ET YCA&KI? 
B l-iPOIJECCE ABYMEPHOI-0 3ATBEPfiEBAHMR CIIJIABA 

A~IOT~IUIII-AH~JI~~~~~~OTC~ Teqemie X~KOCTU R A3MeHeHue o6nacm, 3aHrIToii em, np~ ycaAKe B 

n~~~3aT~epAeBaHHKcnAaBoB Bmyhiepfiofi nonocTA ~p~MoyroAbHoroceqeH~K. C mnoxb30BaHueM 
aJEOpEfTMa S&fPLEC ~UraeTCs CHcfeMa O~~~e~~~~~~X ypaBHeHR&, OCHOBaHHaK Ha MOA~~~~~pO- 

BaHHoii MoAenw cnnoimoii cpeAbl, u MeToAoM cnexcetm 3a nepehfeluemehf @porna 0npeAenneTcr 

U3MeHeHBe o6nacmi. npHEeAeHb1 pa3JWfSiX MeXAy TpaAHWOHHblM WCCJl’ZlOBEUGieM,He yWiTbfBWOIJViM 

~3@&KT yCtlAKEi,H ll~jWTaBJI’33HbIM B LWlHOii CTaTbe. HaiineHo,wO o6yCJIoBneHHbIe yCEtAKOii Te'feHHe 

miAKom~ N is3bseHemse otinacm I~HT~HC&BW~~~~~T KomeKTmHbIE Temonepemc li spehfx nomoi-0 


